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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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The simplex algorithm, Dantzig (1947)

maximize cT x

subject to Ax ≤ b
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The Hirsch conjecture

The simplex algorithm motivates the study of the diameter of
polytopes; bounds on the length of the best possible path to
be picked by the simplex algorithm.

The distance between two vertices u and v of a convex
polytope P is the fewest number of steps needed to get from
u to v in the edge graph of P.

The diameter of a convex polytope P is the maximum
distance between any two vertices u and v .

Let ∆(d , n) and be the maximal diameter of any
d-dimensional convex polytope defined by n facets.

Conjecture (Hirsch (1957))

∆(d , n) ≤ n − d.
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The Hirsch conjecture

Klee and Walkup (1967) gave an example of an unbounded
polytope with d = 4, n = 8 and diameter 5. In general they
showed that ∆(d , n) ≥ n − d + bd/5c for n ≥ 2d .

Todd (1980) transformed this result to bounded polytopes,
but only for nonincreasing paths.

Let ∆b(d , n) and be the maximal diameter of any
d-dimensional bounded convex polytope defined by n facets.

Bounded Hirsch conjecture:

Conjecture

∆b(d , n) ≤ n − d.

Polynomial Hirsch conjecture:

Conjecture

There exists a polynomial p such that ∆(d , n) ≤ p(n).
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Degeneracy

Pc

b

a

P ′c

b′

a

} ε

Recall that a vertex is degenerate if it is contained in more
than d facets.

By slightly perturbing facets, degeneracy can be removed.

This operation corresponds to splitting degenerate vertices.

If the pertubation is sufficiently small, the rest of the
edge-graph of the polytope remains unchanged.

Disclaimer: I am generally not being formal about
pertubations.
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Degeneracy

Let P ′ be obtained from P by performing a pertubation:

Splitting degenerate vertices: Every vertex v ∈ P maps to a
set of vertices Sv for P ′.

Preserving the structure: An edge (u′, v ′) for P ′, with
u′ ∈ Su and v ′ ∈ Sv , corresponds to an edge (u, v) for P iff
u 6= v .

The distance between two vertices u′ ∈ Su and v ′ ∈ Sv in P ′

is at least as large as the distance between the corresponding
vertices u and v in P.

A polytope P is simple if all its vertices are nondegenerate.
I.e., every vertex is contained in exactly d facets.

Klee (1964): For every d-dimensional polytope P with n
facets, there exists a simple d-polytope P ′ with n facets and
diameter at least as large as the diameter of P.

Hence, when analyzing ∆(d , n) and ∆b(d , n) we may restrict
our attention to simple polytopes.
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Vertices sharing facets

For some d-polytope with n facets,
consider two vertices u and v that
share k facets.

The distance between u and v is at
most the length of the shortest path
that stays within the k shared facets,
which is at most ∆(d − k , n − k).

I.e., the k facets define a
(d − k)-face, which is itself a (d − k)
dimensional polytope.

Let k = 2d − n > 0, then:

u v

∆(d , n) ≤ ∆(d − k, n − k) = ∆(n − d , 2(n − d))

∆b(d , n) ≤ ∆b(d − k , n − k) = ∆b(n − d , 2(n − d))
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The wedge operation

Klee and Walkup (1967) defined a
wedge operation for creating
polytopesa:

Let P be a bounded d-polytope with
n facets, and let F be a facet of P.
A new polytope P ′ in dimension
d + 1 is created by copying vertices
not in F and “lifting” the copies to a
new hyperplane.

I.e., replace aT
F x ≤ bF by the two

constraints xd+1 ≥ 0 and
aT
F x + xd+1 ≤ bF , where x ∈ Rd and

xd+1 is a new variable.
P ′ has n + 1 facets.

aThe picture is from a presentation by
F. Santos: http://tinyurl.com/3uk9grc
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The wedge operation

Let P ′ be obtained from P by
performing a wedge operationa, and
let u′ and v ′ be any two vertices of P ′.

The distance between u′ and v ′ is at
least as large as the distance between
the corresponding vertices u and v in
P.

Hence, ∆b(d , n) ≤ ∆b(d + 1, n + 1).

aThe picture is from a presentation by
F. Santos: http://tinyurl.com/3uk9grc
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The d-step conjecture

If k = n − 2d > 0, then repeated use of the wedge operation
gives:

∆b(d , n) ≤ ∆b(d + k , n + k) = ∆b(n − d , 2(n − d))

When combined with the bound obtained when n < 2d , we
get for all d and n:

∆b(d , n) ≤ ∆b(n − d , 2(n − d))

Theorem (Klee and Walkup (1967))

The bounded Hirsch conjecture can be equivalently stated as
∆b(d , 2d) ≤ d, for all d.
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The Hirsch conjecture

Klee (1965): ∆b(d , n) ≤ n − d for d ≤ 3.

Klee and Walkup (1967): ∆b(d , n) ≤ n − d for n − d ≤ 5.

Bremner and Schewe (2008): ∆b(d , n) ≤ n − d for n − d ≤ 6.

Santos (2010) gave an example of a bounded polytope with
d = 43, n = 86, and diameter at least 44. In general, Santos
shows that for fixed d and ε, ∆b(d , n) ≥ (1 + ε)(n − d).

Matschke, Santos and Weibel (2011): An example with
d = 20, n = 40, 36442 vertices, and diameter 21. This gives
ε ≈ 1/20.
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Spindles

A d-polytope with n ≥ 2d facets is called a spindle if it has
two vertices u and v , such that u and v do not share a facet,
and all facets of P contain either u or v .1

The length of a spindle is the distance from u to v .

1The picture is from Santos (2010).
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The counterexample, Santos (2010)

Theorem (The “Santos-wedge”)

If there exists a spindle of dimension d, with n > 2d facets, and
length `, then there exists a spindle of dimension d + 1, with n + 1
facets, and length at least `+ 1.

Using the theorem repeatedly n − 2d times gives: If there
exists a spindle with parameters d , n, `, then there exists a
(n − d)-dimensional spindle with 2(n − d) facets and length
`+ n − 2d .

Hence, if there exists a d-dimensional spindle of length ` > d ,
then the bounded Hirsch conjecture is false.

Theorem

There exists a 5-dimensional spindle with 48 facets and length 6.
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(n − d)-dimensional spindle with 2(n − d) facets and length
`+ n − 2d .

Hence, if there exists a d-dimensional spindle of length ` > d ,
then the bounded Hirsch conjecture is false.

Theorem

There exists a 5-dimensional spindle with 48 facets and length 6.
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The “Santos-wedge”

P

f1

u = {f1, f2, . . . , fk}

v = {fk+1, . . . , fn}

Let P be a d-dimensional spindle with n > 2d facets and
length `.

Then at least one of the two antipodal vertices u and v is
degenerate. Assume v is degenerate.
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The “Santos-wedge”

P ′ = wedge(P, f1)

f1, f
′
1

f1 f ′1

u′ = {f1, f ′1, f2, . . . , fk}

v′2 = {f ′1, fk+1, . . . , fn}v′1 = {f1, fk+1, . . . , fn}

Construct a polytope P ′ as the wedge of P and one of the
facets f1 containing u.

P ′ is not a spindle since there are two vertices v ′1 and v ′2
corresponding to v , both sharing a facet with u′.
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f1 f ′1

u′ = {f1, f ′1, f2, . . . , fk}

v′2 = {f ′1, fk+1, . . . , fn}v′1 = {f1, fk+1, . . . , fn}

Since v was degenerate, v ′1 and v ′2 are also degenerate.

Perturb a facet fi , i > k, such that the only degenerate
vertices in fi are v ′1 and v ′2. If no such facet is readily
available, a preceding pertubation is made.
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The “Santos-wedge”

P ′′ = perturb(P ′)
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The “Santos-wedge”

P ′′ = perturb(P ′)

f1, f
′
1

f1 f ′1

u′′ = {f1, f ′1, f2, . . . , fk}

v′′ = {fk+1, . . . , fn}
The pertubation creates a vertex v ′′ = {fk+1, . . . , fn}, and the
resulting polytope P ′′ is, thus, a (d + 1)-dimensional spindle
with n + 1 facets.

Claim: The length of P ′′ is at least `+ 1.
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The “Santos-wedge”

P

f1

u = {f1, f2, . . . , fk}

v = {fk+1, . . . , fn}

All vertices of P different from v shared a facet with u.

Therefore, all vertices of P ′ different from v ′1 and v ′2 contain
one of the facets f1 or f ′1 and one more facet shared with u′.

v ′′ is at distance at least 2 from all such vertices.
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The “Santos-wedge”

P ′′ = perturb(P ′)

f1, f
′
1

f1 f ′1

u′′ = {f1, f ′1, f2, . . . , fk}

v′′ = {fk+1, . . . , fn}
Since only v ′1 and v ′2 were split during the (latest) pertubation,
all neighbours of v ′′ also originated from either v ′1 or v ′2.

Hence, an additional first step from v ′′ has been added, and
the length of P ′′ has been increased compared to P.
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Upper bounding the diameter of polytopes

The RandomFacet pivoting rule gives a subexponential
upper bound on the diameter of polytopes,

∆(d , n) ≤ 2O(
√

(n−d) log n).

Kalai and Kleitman (1992) showed a quasi-polynomial upper
bound, ∆(d , n) ≤ nlog d+1.

Larman (1970): ∆(d , n) ≤ 2d−3n

Barnette (1974): ∆(d , n) ≤ 2d−2

3 n

The polynomial Hirsch conjecture has yet to be resolved. It is
the subject of the polymath3 project:

gilkalai.wordpress.com/category/polymath3/

We next prove the bounds of Kalai and Kleitman (1992) and
Larman (1970) in an abstract framework by Eisenbrand,
Hähnle, Razborov and Rothvoß (2009).
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Connected layer families

Consider a simple polytope with n facets, indexed from 1 to n,
in d-space.

Vertices are identified by subsets v ⊆ {1, . . . , n} of size d .
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Connected layer families

{1, 2, 3}

{1, 3, 5} {1, 4, 5}

{1, 2, 4}

{2, 3, 6} {2, 4, 6}

{4, 5, 6}

Consider a simple polytope with n facets, indexed from 1 to n,
in d-space.

Vertices are identified by subsets v ⊆ {1, . . . , n} of size d .
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Connected layer families

{1, 2, 3}

{1, 3, 5} {1, 4, 5}

{1, 2, 4}

{2, 3, 6} {2, 4, 6}

{4, 5, 6}{3, 5, 6}

Consider a simple polytope with n facets, indexed from 1 to n,
in d-space.

Vertices are identified by subsets v ⊆ {1, . . . , n} of size d .
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Connected layer families

v = {1, 2, 3}

{1, 3, 5} {1, 4, 5}

{1, 2, 4}

{2, 3, 6} {2, 4, 6}

{4, 5, 6}{3, 5, 6}

F0 F1 F2 F3

Pick some vertex v , and let Fi be the set of vertices at
distance i from v .

Fi is a family of subsets of {1, . . . , n} of size d .
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Connected layer families

. . . . . .

Fi Fk

u

v

Consider two vertices u and v in different families Fi and Fk .
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Connected layer families

. . . . . .

Fi Fk

u

v

Suppose u and v share k facets. Then there is a path from u
to v in the polytope that stays within these k facets. The
path cannot skip a layer.
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Connected layer families

. . . . . .

Fi Fk

u

v

w

Fj

∀i < j < k ∀u ∈ Fi , v ∈ Fk ∃w ∈ Fj : u ∩ v ⊆ w
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Connected layer families

A d-dimensional connected layer family (CLF) F with n
symbols and height t is defined as:

t disjoint, nonempty families, F1, . . . ,Ft , of subsets of
{1, 2, . . . , n} of size d satisfying the connectivity restriction:

∀i < j < k ∀u ∈ Fi , v ∈ Fk ∃w ∈ Fj : u ∩ v ⊆ w

Let ∆clf (d , n) be the maximum integer t such that there
exists a d-dimensional CLF with n symbols and height t.

Then ∆(d , n) ≤ ∆clf (d , n) + 1.
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Induced connected layer families

We say that a symbol s ∈ {1, . . . , n} is active in layer i if
there exists v ∈ Fi with s ∈ v .

Let L(s) and U(s) be the lowest and highest index for which s
is active.

The induced CLF F s (or facet) for a symbol s ∈ {1, . . . , n} is
obtained by throwing away all subsets not containing s. We
are left with:

F s
i = {v ∈ Fi | s ∈ v}, for L(s) ≤ i ≤ U(s)

F s satisfies the connectivity restriction: Every subset w used
to satisfy the connectivity restriction for F for u ∈ F s

i and
v ∈ F s

k must contain s and is, thus, included in F s .

By removing s from all sets of F s , we get a d − 1 dimensional
connected layer family with n − 1 symbols and height
U(s)− L(s) + 1 ≤ ∆clf (d − 1, n − 1).
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Quasi-polynomial upper bound

1

`1

`n

u1

un

t

A
ct

iv
e

sy
m

bo
ls

Layer families

`i
uj

L(`i) U(uj)

Let L = `1, `2, . . . , `n and U = u1, u2, . . . , un be the lists of
symbols sorted in increasing order according to L(s) and U(s),
respectively.

By the pigeonhole principle there exists a common symbol s
among the first bn/2c+ 1 symbols of L and the last
bn/2c+ 1 symbols of U .
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Quasi-polynomial upper bound

1

`1
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Layer families

s s

L(s) U(s)

bn/2c

bn/2c

∆clf (d− 1, n− 1)

The length of the interval from L(s) to U(s) is the height of
F s which is at most ∆clf (d − 1, n − 1).

Before L(s) and after U(s) there are at most bn/2c active
symbols.

The respective intervals may be viewed as CLFs with at most
bn/2c symbols, which have heights at most ∆clf (d , bn/2c).
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Quasi-polynomial upper bound

1

`1

`n

u1

un

t

A
ct

iv
e

sy
m

bo
ls

Layer families

s s

L(s) U(s)

bn/2c

bn/2c

∆clf (d− 1, n− 1) ∆clf (d, bn/2c)∆clf (d, bn/2c)

We get: ∆clf (d , n) ≤ ∆clf (d − 1, n − 1) + 2∆clf (d , bn/2c)

Using ∆clf (1, n) = n and ∆clf (d , n) = 0 for d > n, the
following theorem is proved by induction:

Theorem (Kalai and Kleitman (1992))

∆clf (d , n) ≤ nlog d+1.
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Better bound for small d

U(s0) U(s3)

A
ct
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Layer families

s1

s2

s3

U(s1) U(s2)

Define U(s0) := 0, and pick a maximal sequence of symbols
s1, s2, . . . , sk such that:

si+1 = argmax
s
{U(s) | L(s) ≤ U(si ) + 1}
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Let ni be the number of active symbols in the interval
[U(si−1) + 1,U(si )], then:

∆clf (d , n) ≤
k∑

i=1

∆clf (d − 1, ni )

Each symbol appears in at most 2 intervals:
∑k

i=1 ni ≤ 2n.
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Better bound for small d

Theorem (Larman (1970))

∆clf (d , n) ≤ 2d−1n.

Proof:

By induction:

∆clf (d , n) ≤
k∑

i=1

∆clf (d − 1, ni ) ≤
k∑

i=1

2d−2ni

= 2d−2
k∑

i=1

ni ≤ 2d−22n = 2d−1n
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Polymath3: A good place to start

The presented upper bounds hold even when the layer families
contain multisets. I.e., {1, 1, 2} ∩ {1, 2, 3} = {1, 2}.

Let ∆m
clf (d , n) be the maximum height of any d-dimensional

connected layer family with multisets using n symbols.

Note that ∆(d , n) ≤ ∆clf (d , n) + 1 ≤ ∆m
clf (d , n) + 1.

It is not difficult to show that ∆m
clf (d , n) ≥ d(n − 1) + 1:

{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, . . .

Conjecture (Hähnle (polymath3))

∆m
clf (d , n) = d(n − 1) + 1.

Justification: http://tinyurl.com/3qf556p
Open problem: Close the gap

3(n − 1) + 1 ≤ ∆m
clf (3, n) ≤ 4n.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 24/49

http://tinyurl.com/3qf556p


Polymath3: A good place to start

The presented upper bounds hold even when the layer families
contain multisets. I.e., {1, 1, 2} ∩ {1, 2, 3} = {1, 2}.
Let ∆m

clf (d , n) be the maximum height of any d-dimensional
connected layer family with multisets using n symbols.

Note that ∆(d , n) ≤ ∆clf (d , n) + 1 ≤ ∆m
clf (d , n) + 1.

It is not difficult to show that ∆m
clf (d , n) ≥ d(n − 1) + 1:

{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, . . .

Conjecture (Hähnle (polymath3))

∆m
clf (d , n) = d(n − 1) + 1.

Justification: http://tinyurl.com/3qf556p
Open problem: Close the gap

3(n − 1) + 1 ≤ ∆m
clf (3, n) ≤ 4n.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 24/49

http://tinyurl.com/3qf556p


Polymath3: A good place to start

The presented upper bounds hold even when the layer families
contain multisets. I.e., {1, 1, 2} ∩ {1, 2, 3} = {1, 2}.
Let ∆m

clf (d , n) be the maximum height of any d-dimensional
connected layer family with multisets using n symbols.

Note that ∆(d , n) ≤ ∆clf (d , n) + 1 ≤ ∆m
clf (d , n) + 1.

It is not difficult to show that ∆m
clf (d , n) ≥ d(n − 1) + 1:

{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, . . .
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Conjecture (Hähnle (polymath3))

∆m
clf (d , n) = d(n − 1) + 1.

Justification: http://tinyurl.com/3qf556p
Open problem: Close the gap

3(n − 1) + 1 ≤ ∆m
clf (3, n) ≤ 4n.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 24/49

http://tinyurl.com/3qf556p


Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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Markov decision processes

Solving Markov decision processes (MDPs) is an important
problem in operations research and machine learning; it is, for
instance, used to solve the dairy cow replacement problem.
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Markov decision processes

Markov decision processes (MDPs) is a special case of
Shapley’s stochastic games (1953). They were introduced by
Bellman (1957).

MDPs can be solved by linear programming, and also solving
MDPs in strongly polynomial time remains open.

Ye (2010) showed that the simplex algorithm with the
LargestCoefficient pivoting rule solves discounted
MDPs with a fixed discount factor in strongly polynomial
time.

Friedmann, Hansen and Zwick (2011) used MDPs to get
lower bounds of subexponential form for the RandomEdge
and RandomFacet pivoting rules and the
Randomized Bland’s rule, and Friedmann (2011) for the
LeastEntered pivoting rule.
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Markov chains

1 2 3 41 1
2

1
2

1
2

1
2 1

An n-state Markov chain is defined by an
n × n stochastic matrix P, with Pi ,j being
the probability of making a transition
from state i to state j . I.e.,

∑
j Pi ,j = 1.

Let b ∈ Rn define a probability
distribution for picking an initial state.

bT Pk is a vector defining the probabilities
of being in each state after k transitions.

P =


0 1 0 0
1
2 0 1

2 0
1
2 0 0 1

2

0 0 0 1



k bT Pk

0 1 0 0 0

2 1
2 0 1

2 0

3 1
4

1
2 0 1

4

...
...
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An n-state Markov chain is defined by an
n × n stochastic matrix P, with Pi ,j being
the probability of making a transition
from state i to state j . I.e.,

∑
j Pi ,j = 1.

Let b ∈ Rn define a probability
distribution for picking an initial state.

bT Pk is a vector defining the probabilities
of being in each state after k transitions.

P =


0 1 0 0
1
2 0 1

2 0
1
2 0 0 1
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0 0 0 1
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the probability of making a transition
from state i to state j . I.e.,
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j Pi ,j = 1.
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An n-state Markov chain is defined by an
n × n stochastic matrix P, with Pi ,j being
the probability of making a transition
from state i to state j . I.e.,

∑
j Pi ,j = 1.

Let b ∈ Rn define a probability
distribution for picking an initial state.

bT Pk is a vector defining the probabilities
of being in each state after k transitions.
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Markov chains with rewards

We refer to the act of leaving a state as an action.

A Markov chain with rewards is a Markov chain P ∈ Rn×n

where a vector c ∈ Rn associates actions with rewards (or
costs). I.e., ci is the reward for leaving state i .

We are interested in the expected total reward,∑∞
k=0 bT Pkc , accumulated for some initial vector b. Note

that this series generally does not converge.

To ensure convergence we introduce a discount factor γ < 1,
such that after each transition the Markov chain is stopped
with probability 1− γ. I.e., (γP)k → 0 for k →∞.

The expected total discounted reward for some b ∈ Rn is
then

∑∞
k=0 bT (γP)kc .

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 29/49



Markov chains with rewards

We refer to the act of leaving a state as an action.

A Markov chain with rewards is a Markov chain P ∈ Rn×n

where a vector c ∈ Rn associates actions with rewards (or
costs). I.e., ci is the reward for leaving state i .

We are interested in the expected total reward,∑∞
k=0 bT Pkc , accumulated for some initial vector b. Note

that this series generally does not converge.

To ensure convergence we introduce a discount factor γ < 1,
such that after each transition the Markov chain is stopped
with probability 1− γ. I.e., (γP)k → 0 for k →∞.

The expected total discounted reward for some b ∈ Rn is
then

∑∞
k=0 bT (γP)kc .

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 29/49



Markov chains with rewards

We refer to the act of leaving a state as an action.

A Markov chain with rewards is a Markov chain P ∈ Rn×n

where a vector c ∈ Rn associates actions with rewards (or
costs). I.e., ci is the reward for leaving state i .

We are interested in the expected total reward,∑∞
k=0 bT Pkc , accumulated for some initial vector b. Note

that this series generally does not converge.

To ensure convergence we introduce a discount factor γ < 1,
such that after each transition the Markov chain is stopped
with probability 1− γ. I.e., (γP)k → 0 for k →∞.

The expected total discounted reward for some b ∈ Rn is
then

∑∞
k=0 bT (γP)kc .

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 29/49



Markov chains with rewards

Observe that:

I = lim
`→∞

I − (γP)` = lim
`→∞

(I − γP)
`−1∑
k=0

(γP)k = (I − γP)
∞∑

k=0

(γP)k

I.e., (I − γP)−1 =
∑∞

k=0(γP)k .

Proof that (I − γP) is invertible:

Assume there is a non-zero linear combination of the columns
that equals the zero vector, and let i be the column with
largest weight.
The i ’th row cannot sum to zero since the contribution from
the diagonal element is numerically larger than the sum of the
remaining elements: A contradiction.
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The value vector

The expected total discounted reward for some b ∈ Rn is

∞∑
k=0

bT (γP)kc = bT (I − γP)−1c.

We define the value of state i as the expected total
discounted reward when starting in state i with probability 1:

vi = eT
i (I − γP)−1c

In general eT
i A is just the i ’th row of A, and we can define

the vector of values v ∈ Rn as:

v = (I − γP)−1c
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The flux vector

Let e be a vector of ones. Note that the
sum of values eT v = eT (I − γP)−1c
corresponds to setting b = e.

Let xi be the expected (discounted)
number of times action i , leaving state i ,
is used for b = e. I.e., xi is the discounted
sum of column i in the table.

Equivalently, xi is the sum of values when
c = ei :

xi = eT (I − γP)−1ei

Hence, we define the flux vector x ∈ Rn

as:
xT = eT (I − γP)−1

P =


0 1 0 0
1
2 0 1

2 0
1
2 0 0 1

2

0 0 0 1


k eT Pk

0 1 1 1 1

1 1 1 1
2

3
2

2 3
4 1 1

2
7
4

3 3
4

3
4

1
2 2

4 5
8

3
4

3
8

9
4

5 9
16

5
8

3
8

39
16

...
...
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The flux vector

Let e be a vector of ones. Note that the
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The flux vector

Note that using the flux vector gives a
different way of summing up the values:

eT v = cT x

Also, each row in the table sums to n,
meaning that the discounted sum is:

eT x =
n

1− γ

Finally, xi ≥ 1, for all i , due to the first
row of the table.
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Markov decision processes

1

7

3

2

-4

2

3

5

-10

1
2

1
2 1 1

1 1
2

1
4 1

4
1
3

2
3

a1

a2

a3

a4

a5

a6

A Markov decision process consists of a set of n states S ,
each state i ∈ S being associated with a non-empty set of
actions Ai .

Each action a is associated with a reward ca and a probability
distribution Pa ∈ R1×n such that Pa,j is the probability of
moving to state j when using action a.
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A policy π is a choice of an action from each state.

A policy π is a Markov chain with rewards.

Let vπ be the value vector for π.

A policy π∗ is optimal if it maximizes the values of all states.
I.e., vπ∗ ≥ vπ for all π.
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Markov decision processes
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Shapley (1953), Bellman (1957): There always exists an
optimal policy.

Solving an MDP means finding an optimal policy.
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A discounted MDP with n states and a total of m actions can
be represented by:

A discount factor γ < 1.
A zero-one matrix J ∈ {0, 1}m×n, with Ja,i = 1 iff a ∈ Ai .
A stochastic matrix P ∈ Rm×n.
A reward vector c ∈ Rm.

For some policy π, Pπ and cπ are obtained by combining the
corresponding n rows of P and c . Note that Jπ = I .
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The value defining equations

1 7

2

3

1
3

2
3

v1 = 7 + γ( 1
3v2 + 2

3v3)

Take a look at the equations defining the value vector vπ for
some policy π:

vπ = (I − γPπ)−1cπ ⇐⇒ vπ = cπ + γPπvπ

I.e., the values should be consistent when taking one step.
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Optimal values

Intuitively, an optimal policy π∗ must maximize the values
locally by using the best actions given the value vector vπ∗ .

Indeed, there exists a unique optimal value vector v∗ ∈ Rn

satisfying:
∀i ∈ S : v∗i = max

a∈Ai

ca + γPav∗

A policy π∗ is optimal if and only if vπ∗ = v∗.

Knowing v∗ we can easily construct an optimal policy π∗ by
picking locally optimal actions:

∀i ∈ S : π∗(i) ∈ argmax
a∈Ai

ca + γPav∗
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Linear program for solving MDPs

Standard trick:

max{a, b} = min c s.t. c ≥ a and c ≥ b

The requirement:

∀i ∈ S : v∗i = max
a∈Ai

ca + γPav∗

can be equivalently stated as v∗ being the optimal solution to
the linear program:

min
y∈Rn

eT y

s.t. ∀i ∈ S ,∀a ∈ Ai : yi ≥ ca + γPay
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Primal and dual LPs for MDPs

(P)
max cT x
s.t. (J − γP)T x = e

x ≥ 0
(D)

min eT y
s.t. (J − γP)y ≥ c

Let’s take a closer look at the constraints of (P):

∀i ∈ S :
∑
a∈Ai

xa = 1 + γ
∑
j∈S

∑
b∈Aj

Pb,ixb

Since all variables are non-negative the right-hand-side is
positive, and at least one variable xa for a ∈ Ai is positive for
every i ∈ S .

In any basic feasible solution xB with basis B at most n = |S |
variables are non-zero.

There must be exactly one positive variable for each state,
and B can be interpreted as a policy π.
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Policies and basic feasible solutions

(P)
max cT x
s.t. (J − γP)T x = e

x ≥ 0

Recall that (I − γPπ) is invertible for every policy π, such that
π forms a basis for (P).

Let xπ ∈ Rn and xπ̄ ∈ Rm−n be vectors of basic and non-basic
variables for π.

The basic variables must satisfy (I − γPπ)T xπ = e, which is
exactly the definition of the flux vector for π.

Since all variables of a flux vector are greater than 1, (xπ, xπ̄)
is a basic feasible solution for (P).

Hence, there is a one-to-one correspondence between policies
and basic feasible solutions of the primal LP (P).
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The reduced costs

Let π be a basis. The reduced cost vector c̄π ∈ Rm, i.e. the
coefficients of the corresponding tableau, is defined as:

c̄π = c − (J − γP)(I − γP)−1cπ = c − (J − γP)vπ

Equivalently, for all i ∈ S and a ∈ Ai :

c̄πa = (ca + γPavπ)− (vπ)i

Hence, c̄πa is the improvement over the current value by using
a for one step w.r.t. vπ.

If c̄πa > 0 we say that a is an improving switch.
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Improving switches and multiple joint pivots

Lemma (Howard (1960))

Let π′ be obtained from π by jointly performing any non-empty set
of improving switches. Then vπ′ ≥ vπ and vπ′ 6= vπ.

Lemma (Howard (1960))

A policy π is optimal iff there are no improving switches.
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Policy iteration

Function PolicyIteration(π)

while ∃ improving switch w.r.t. π do

Update π by performing improving switches

return π

Howard’s algorithm: Perform as many improving switches as
possible. More precisely,

∀i ∈ S : π(i)← argmax
a∈Ai

c̄πa
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The LargestCoefficient pivoting rule for MDPs

Theorem (Ye (2010))

The simplex algorithm with the LargestCoefficient pivoting
rule solves the primal LP of an n-state MDP with m actions and
discount factor γ < 1 in at most O( mn

1−γ log n
1−γ ) steps. The same

is true for Howard’s algorithm.

When γ is some fixed constant this gives a strongly polynomial
bound. I.e., a polynomial bound only depending on n and m.

The idea of the proof is to show that for every O( n
1−γ log n

1−γ )
pivoting steps a new variable will never enter the basis again.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 43/49



The LargestCoefficient pivoting rule for MDPs

Theorem (Ye (2010))

The simplex algorithm with the LargestCoefficient pivoting
rule solves the primal LP of an n-state MDP with m actions and
discount factor γ < 1 in at most O( mn

1−γ log n
1−γ ) steps. The same

is true for Howard’s algorithm.

When γ is some fixed constant this gives a strongly polynomial
bound. I.e., a polynomial bound only depending on n and m.

The idea of the proof is to show that for every O( n
1−γ log n

1−γ )
pivoting steps a new variable will never enter the basis again.
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The LargestCoefficient pivoting rule for MDPs

For some policy π with basic feasible solution (xπ, xπ̄) the
tableau method rewrites the objective function as:

max z + (c̄π)T x

where z = cT
π xπ = eT (I − γPπ)−1cπ is the current value, and

c̄π is the reduced cost vector.

Let ∆π̄ = maxa c̄πa be the largest coefficient.

The new objective function is equivalent to the original
objective function, and in particular the optimal value z∗ is
upper bounded by the largest conceivable increase:

z∗ ≤ cT
π xπ +

n

1− γ
∆π̄
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The LargestCoefficient pivoting rule for MDPs

Let xa be the non-basic variable with coefficient ∆π̄ for some
policy π.

The LargestCoefficient pivoting rule constructs the next
basis π′ by increasing xa until a basic variable becomes zero.

The improvement in value cT
π′xπ′ − cT

π xπ is the increase in xa

multiplied by ∆π̄.

Since xa is part of the flux vector of π′, the new value of xa is
at least 1, and we get:

cT
π′xπ′ − cT

π xπ ≥ ∆π̄

Howard’s algorithm also constructs a new policy containing
xa, meaning that this increase is again guaranteed.

Note: This is the only part of the analysis affected by the
chosen pivoting rule. I.e., the proof also works for the
LargestIncrease pivoting rule.
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The LargestCoefficient pivoting rule for MDPs

Combining

z∗ ≤ cT
π xπ +

n

1− γ
∆π̄ and cT

π′xπ′ − cT
π xπ ≥ ∆π̄

gives

z∗ ≤ cT
π xπ +

n

1− γ
(cT
π′xπ′ − cT

π xπ) ⇐⇒

z∗ − cT
π′xπ′ ≤

(
1− 1− γ

n

)
(z∗ − cT

π xπ)

Hence, each step brings us significantly closer to the optimal
value.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 46/49



The LargestCoefficient pivoting rule for MDPs

Combining

z∗ ≤ cT
π xπ +

n

1− γ
∆π̄ and cT

π′xπ′ − cT
π xπ ≥ ∆π̄

gives

z∗ ≤ cT
π xπ +

n

1− γ
(cT
π′xπ′ − cT

π xπ) ⇐⇒

z∗ − cT
π′xπ′ ≤

(
1− 1− γ

n

)
(z∗ − cT

π xπ)

Hence, each step brings us significantly closer to the optimal
value.

Thomas Dueholm Hansen - Lecture 2 MADALGO & CTIC Summer School Page 46/49



The LargestCoefficient pivoting rule for MDPs

Let πt be the basic feasible solution obtained after t pivoting
steps, starting from π0, then:

z∗ − cT
πt xπt ≤

(
1− 1− γ

n

)t

(z∗ − cT
π0xπ0)

The bound is then combined with:2

Lemma

Let π∗, πt and π0 be three policies with vπ∗ ≥ vπt ≥ vπ0 . Let
a = argmaxa∈π0 c̄π

∗
a , and assume a ∈ πt . Then:

eT vπ∗ − cT
πt xπt ≥ 1− γ

n
(eT vπ∗ − cT

π0xπ0)

2This particular formulation of the lemma is from Hansen, Miltersen and
Zwick (2011).
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The LargestCoefficient pivoting rule for MDPs

We get:

1− γ
n
≤

z∗ − cT
πt xπt

z∗ − cT
π0xπ0

≤
(

1− 1− γ
n

)t

Using log(1− x) ≤ −x for x < 1 gives:

t ≤ n

1− γ
log

n

1− γ

Hence, after more than n
1−γ log n

1−γ steps, the action a
specified by the lemma can never enter the basis again, which
completes the proof.
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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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